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Investigation of Boundary Algorithms for
Multiresolution Analysis

Martin Peschke and Wolfgang Menzel, Fellow, IEEE

Abstract—An investigation on the multiresolution time-domain
(MRTD) method utilizing different wavelet levels in one mesh
is presented. Contrary to adaptive thresholding techniques,
only a rigid addition of higher order wavelets in certain critical
cells is considered. Their effect is discussed analytically and
verified by simulations of plain and dielectrically filled cavities
with Daubechies and Battle-Lemarie orthogonal, as well as
Cohen—-DaubechiesFeauveau (CDF) biorthogonal wavelets,
showing their insufficiency unless used as a full set of expansion.
It ispointed out that improvements cannot be expected from these
fixed mesh refinements. Furthermore, an advanced treatment
concerning thin metallization layers in CDF algorithms is pre-
sented, leading to a reduction in cell number by a factor of three
per space dimension compared to conventional finite difference
time domain (FDTD), but limited to very special structures with
infinitely thin irises. All MRTD results are compared to those of
conventional FDTD approaches.

Index Terms—Boundary conditions, multiresolution analysis,
time-domain methods, wavelets.

I. INTRODUCTION

HE multiresolution time-domain (MRTD) method has

been under examination by various publications in the
past. This includes the wavelet Galerkin scheme based on
Battle-Lemarie [1], Haar [2], Daubechies orthogona ([3],
dlightly different algorithm) and Cohen—Daubechies—Feauveau
(CDF) biorthogonal wavelets [4]. In structures with mainly
harmonic spatial field distribution, it was shown analytically
and by severa simulations that the new approach reduces
the numerical phase error drastically, alowing a reduced cell
number by up to two orders of magnitude.

Additionally, al prementioned authors claim that MRTD
achieves a natural mesh refinement such as introducing denser
discretization rates for field components with fast spatial
variation by adding wavelets of higher order. This feature is
expected to further reduce the numerical effort and to contribute
to an exact localization of different boundary conditions [5].
Thus far, the only publication dealing with an a priori mesh
refinement is[6], but results are compared only qualitatively to
those of finite difference time domain (FDTD) with avery high
discretization rate. If any, this paper’s anaytical survey and
computational validation indicates that an advantage of such
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approaches cannot be expected in general. At last, dynamical
mesh adaption remains a possibility for enhancing MRTD’s
performance ([3], [7]).

Anocther often applied approach is the FDTD-like treatment
of dielectric boundaries by local sampling for Daubechies or
CDF waveletsin scaling functions only [8], neglecting the exact
material operator that has to actually be deployed. It will be
shown that, even with one-dimensional cavities, this simplified
algorithmyieldsworseresults compared to conventional FDTD.

MRTD’ s speed can beimproved by pre-cal cul ating boundary
field dependencies (Massachusetts Institute of Technology
(MIT), Cambridge, technique, [9]), but this approach does not
affect accurateness and is very memory expensive for large
calculation areas and arbitrary structures.

Finally, all but concave edges represent aproblem for wavel et
schemesincorporating animage principleto model perfect elec-
tric boundaries, explaining their rare appearance in most publi-
cations thus far. This paper presents a new treatment for thin
metallic irises by CDF agorithms.

I[l. MRTD FORMULATION

The (biorthogonal) wavelet representation of propagating
fields, for smplicity in one dimension only, but for an arbitrary
order of expansion, is as follows:

zzz 409

(y) - ha(t) (2)

rn,—|—1/2(y) : hk+(1/2)(t).
2

W1 (3) is a dual-wavelet function of order ¢ displaced by m
units Ay, and h,(¢) isthe zeroth-order rectangular Haar wavel et
shifted by & units At intime[4]. For orthogonal wavelet bases
like the Battle—L_emarie and Haar family, ¥¢ (i) equals UZ (y/).

Extension to the three-dimensional case is straightforward,
replacing coefficients E, H,? (k) by E, H* (k), and all

components shifted according to the Yee scheme like in [1],
eg.
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The letters [, m, and n indicate the Yee cell number in three
dimensions, p, ¢, and r theaccording wavelet level, respectively.
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TABLE |
CONNECTION COEFFICIENTS FOR HAAR WAVELETS
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TABLE I
CONNECTION COEFFICIENTS FOR CDF(2, 2) WAVELETS

P 0 1

D 0 | 1 0 ] 1

3
—1 | —1.2291667 0 +0.0416667 | —1.4375000
0 | +1.2291667 | —0.1510417 0 +1.4375000
+1 | —0.0937500 | +-0.0833333 | —0.0416667 | +0.0937500
+2 | +0.0104167 | —0.0052083 | +-0.0208333 | —0.0104167

TABLE Il

CONNECTION COEFFICIENTS FOR BATTLE-LEMARIE WAVELETS

p 0 1

D 0 ] 1 0 | 1

3

—1 | ~1.2918462 0 +-0.0465973 | —2.4725388

0 | +1.2918462 | —0.0465973 0 +2.4725388
41 | —0.1560761 | +0.0545394 | —0.0465973 | +0.9562282
42 | +0.0596391 | —0.0369996 | +-0.0545394 | 4+0.1660587
+3 | —0.0293099 | +-0.0205745 | —0.0369996 | +0.0939244
+4 | +0.0153716 | —0.0111530 | +0.0205745 | +0.0031413
+5 | —0.0081892 | +0.0059769 | —0.0111530 | +0.0134936
+6 | +0.0043788 | —0.0032026 | +0.0059769 | —0.0028589
+7 | —0.0023433 | +0.0017141 | —0.0032026 | +0.0027788
+8 | +0.0012542 | —0.0009177 | +0.0017141 { —0.0011295

Introducing thefield expansioninto Maxwell’ sequations, the
update instructions for the one-dimensional case are derived by
testing with the nondua wavelet functions ¥, (y)

DRI

E8(k+1) =E,"

Trm

CH.L (k) 4
H.M(k+1)=H.2 (k ZZa(m m—1,q,9)
B (k+1) ©)

with the connection coefficient
. < d
a(i, q,q) = /_Oo dy\IjH-(l/?)( y) - Wi(y)dy.

Numerical valuesup to thefirst order aregivenin Tables -1l
for recently used wavelet families with the symmetry relation-
shipa(—1,0,0) = —a(i—1,0,0),a(—%,0,1) = —a(i—2,0, 1),
a(—i,1,0) = —a(i,1,0), and a(—i,1,1) = —a(i — 1,1,1).
Recently, [6] presented away of calculating the connection co-
efficients directly out of wavelet’ s filter coefficients.

(6)

I1l. ANALYTICAL ANALYSIS

A. Homogeneous Formulations

Analytical investigations on MRTD’s dispersion properties
have been done by [4] and [10]. However, only homogeneous
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expansions of zeroth or first order across the whole calculation
areahave been considered, and spurious sol utions are neglected.
According to the formulation in [10], first-order fields are ar-
ranged as follows:

E,’L’O (k) _EO . Gj('gﬂn"Ay—kat) (7)
xm( ) = Cj(’g”("""l/?)ﬂyfwkﬂt) (8
H.° (k) =H, - 3 (m+1/D)My—w(h+1/2)A0) ©
4717 ( ) ej(,ﬁﬂ, (nz-l—l)Ay_w(k_i_l/Q)At). (10)

B, = 2w /A, denotes the numerical wavenumber in coeffi-
cient space, which differs from the real case 3 = 2/ for
a fixed angle frequency w. By introducing (7)—10) and after
some mathematical manipulations, the update (4) and (5) yield
an eigenvalue problem for the plane-wave amplitudes £, to H;
after some mathematical operations as follows:

Coo  Co1
0 0 —_— ==
Eo ZF ZF EO
I 0 0 G0 Cu £,
H, VAL H,
ﬂl CooZr CoiZp 0 0 ﬂl
CioZr CiiZp 0 0
s
(11)
27 +1
S a(i,0,0) - sin <M)
PO n
Coo =G - - : (12)
. [(7q
sin <_)
T
2 2
> a(4,0,1) - sin <7ru( L )>
A n
Co1 =¢ ~ l (13)
sin | —
n
2
S a(i,1,0) - sin <7r“( L))
i n
010 =q ~ d (14)
. (7q
sin <_)
n
2¢+1
S a(i,1,1) - sin <M)
7 n
Cii=¢- d (15)

sin| —
™

The matrix elements C;; are the connecting terms between
the ordersi and j, § := coAt/Ay isthe Courant number, « :=
A/ A, istheratio between real and numerical wavelength, n; :=
A/Ay is the number of Yee cells per wavelength, and Zg is
the free-space wave impedance. The dispersion relationship is
obtained from det(C — I') = 0 asfollows:

1-Cgy—C —2C01C10+(CooCi1 —Co1Cho)> = 0. (16)

This is aimost the same result as in [4], where the factor 2 in
front of the forth term obviously has been forgotten.

Fig. 1 compares the implicit equation (16) in the form of
a wavelength error over discretization rate for CDF(2,2)
wavelets with the zeroth-order solution 1 — CZ, = 0. Like for
the Battle-Lemarie family, a spurious branch is obtained in
addition to the improved curve.
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Fig. 1. Dispersion properties of complete zeroth- and first-order approaches
using CDF(2, 2) wavelets. The Courant number is ¢ = 0.25. The numerical
wavelength error is plotted versus the number of cells per wavelength for
wavelets of order 0 and 1.
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Fig. 2. Dispersion properties of the multiresolution approach using
CDF(2,2) wavelets. The Courant number is ¢ = 0.25. Asin Fig. 1, the
plot shows the numerical wavelength error versus the number of cells per
wavelength. The mixed approach shows the biggest wavelength error.

B. Multiresolution Formulations

The dispersion properties of a multiresolution approach will
now be examined. Consider a one-dimensional dielectric res-
onator that isfilled with two different dielectrics. According to
Maxwell’s equations for inhomogeneous media, electric fields
are expected to be differentiable smooth on the surface in the
center of the cavity, while magnetic fields are not. This problem
would lead to a multiresolution algorithm with low order E,
only, but high order H..

Choosing ,1 = &2 = 1, the following pre-examinations
are performed. With all E,., = 0, the system matrix of the

rm

eigenvalue problem can be written as

E, o Sw SN yp,
— F F
Ho | == cp-2zp 0 0 H, (17)
H, Ciwo-Zp O 0 H,
leading to the dispersion relationship
det(C — I) = 1 — C2, — 2C1 C10=0. (18)

The mixed-order curves are expected to lie between the ho-
mogeneous ones. However, in fact, the results are worse than
those of zeroth order at any given resolution, as indicated in
Fig. 2.

With this prior research, it cannot be anticipated that a mul-
tiresolution formulation with higher order H_. in the whole cal-
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TABLE IV
MATERIAL OPERATOR [£s] FOR ZEROTH- AND
FIRST-ORDER CDF (2, 2) WAVELETS

9=0,4=0
m\m -1 0 +1
-1 €r1 3 (er1 — €r2)
0 0 L(em+em) | O
+1 0 15 (€r2 —€r1) | Er2
g=0,g=1
-1 31 (Er2 — €r1) 31 (Er2 — €1) 0
0 i (e —€r2) 1 (er2—€r) 0
+1 21—4 (€r1 —€ra) ﬁ (€r1 — €r2) 0
g=1,4=0
-1 0 L (er1 —€r2) 0
0 0 & (er2 —€01) 0
g=1,4=1
-1 L (1lep +er2) 75 (€r2 —€r1) 0
0 & (er1 —€r2) | &5 (er1+1lep2) | O

culation area or just at the surface between the two dielectrics
will provide better results than asimple zeroth-order one. Anal-
ogous graphs are obtained for Battle-Lemarie families.

IV. CDF(2,2) BOUNDARY ALGORITHMS
A. Dielectric Boundaries

Asthe stencil size of CDF wavelets exceeds one, exact treat-
ment of dielectric boundariesis only possible with the material
operator derived by [1]. For one-dimensional propagation and a
dielectric surface located at ¢ = 0, this operator reads as

D, (k) :2—;-;%)[651-&%@) (19)
0 -
o5 =en [ )Wy
e /0 VL)L )y, (20)

For CDF(2, 2) wavelets, theseintegral s have to be cal culated
numerically making use of the cascade algorithm provided by
[11]. For 20 iterations, the results are displayed in Table IV.
Notethat rational fractions replaced the numerical values, being
identical in all correct digits. Perhaps they will be shown to be
exact by analytical investigations. Theseresults are presented in
[6] aswell, but their exact quantity is omitted.

Concerning the multiresolution approach, the following field
representation was chosen.

1) As the eectric field is continuous and differentiable
smooth, only zeroth-order coefficients are applied.

2) Asthemagneticfieldiscontinuous, but not differentiable,
one first-order wavelet is arranged in the boundary plane
to model the bump [see Fig. 3(a)].
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@) (b)

Fig. 3. Modeling of special boundary field curves (top) including zeroth-
(thick lines) and first-order (thin lines) wavelets (bottom). (a) Modeling of H .,
(b) Modeling of D... The interface between the two dielectric media lies at
y = 0 (seetext for details).

Fig. 4. Tangential electric field in the plane of athin metallic iris extended up
toy = 0. To ensure zero tangential field on the iris, wavelet coefficients up to
E.,o must vanish.

3) Asthe electric flux jumps, two first order functions are
selected to the left and right of the dielectric interface, as
shown in Fig. 3(b).

At last, the simplified local sampling approach for CDF(2, 2)
wavelets will be observed in the ssimulations part. Similar to
FDTD, this one only uses the main diagonal elements of the
first Table 1V. Note the equality to zeroth-order Daubechies
wavelets with local sampling, employing the same connection
coefficients.

B. Improved CDF (2, 2) Algorithm for Thin Perfect Electric
Conductors (PECs)

Asfor other MRTD formulations, PECs have to be modeled
in CDF(2, 2) agorithms utilizing the image principle. This ap-
plieswell for enclosed concave cavities, but yields certain prob-
lemswhen applied to convex edges or thin metallic irises. Espe-
cially for thelatter, it is easy to improve the performance with a
simple change in geometry.

Consider Fig. 4, which showsthe z-component of the electric
fieldinaplaneparallel tothe (x, y)-surfacethat is half occupied
by athin iris extended up to ¥ = 0, but with no limits in the
z-direction. For this setup, E,. lies tangentia to the PEC and
should vanish in the left half-space (E,(z,y < 0,2 = 0) =
0). This is usudly achieved by adding uneven images in the
columns —1, —2, ..., occupied by theiriswhile processing the
update equations.

For CDF(2, 2), itisnot sufficient to apply theimage principle
only to the negative columns. As Fig. 4 indicates, this proce-
dure leaves the wavelet coefficient £, untouched, producing
nonzero fields on the metallization. A simple extension of the
iris by one cell can solve this problem, producing alinear rising
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Fig. 5. Two one-dimensional resonators under investigation. (a) Air filled.
(b) With dielectric charge.
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Fig. 6. First-order simulation with spurious modes. Comparison of simulation
results and analytically derived wavelength error graphs of Fig. 1.

FE,. in front of the edge. Since this evaluation is not straight-
forward for other field components or wavelet types, it is only
possible to talk about an effective aperture height in the MRTD
domain, which is supposed to be one cell size larger than the
actual geometry in the CDF-MRTD case.

V. SIMULATIONS
A. Smulation of Dielectric Boundaries

At firgt, the air-filled resonator in Fig. 5(a) was analyzed in
order to verify the results of Section I1l. The Courant number
was chosento be § = 0.6 for FDTD and ¢ = 0.25 for MRTD.
The cells per rea wavelength n; were calculated by resonant
order and spatial discretization length Ay for each of the first
three resonances, as well as the spurious modes at six and ten
overall grid points. Errors in the resonant frequency compared
to thetrivial analytic case were recal culated to numerical wave-
length errors. The results are displayed in Figs. 6 and 7 together
with the dispersion graphs.

A good match can be observed for both diagrams. Additional
errors are addressed to nonideal boundary positions in the sim-
ulation, which cannot be taken into account by the analytical
investigation of free-space plane waves.

These results do not encourage higher order attempts.
Complete first-order expansions suffer under spurious solu-
tions, what is not bearable for .S-parameter extraction. Mixed
approaches are worse than one of a complete lower order even
in this trivial case so they cannot be expected to be better
in general. In [6], results are compared only qualitatively to
FDTD with a very high resolution, which does not justify the
emphasis of their superiority.
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Fig. 7. Mixed-order simulations. Comparison of simulation results and
analytically derived wavelength error graphs of Fig. 2.

TABLE V
NUMERICAL RESULTS FOR THE CHARGED RESONATOR. THE ANALYTIC
RESONANT FREQUENCY OF THE DOMINANT MODE IS 59.82 MHz

total | EDTD CDE(2.2)
cells loc. samp. | [£] order 0 | multires.
6 59.38 60.40 60.05 64.38
(-0.736%) | (+0.970%) | (+0.384%) | (+7.623%)
10 59.69 60.03 59.87 62.33
(-0.217%) | (+0.351%) | (+0.084%) | (+4.196%)

The next study dealt with a dielectrically charged resonator
utilizing different boundary algorithmsfor CDF(2, 2) wavelets.
Having maximum fields in the middle of the cavity close to the
boundary, the basic resonant mode is the most interesting one.
Simulation parameterswere as before, and the step inthe dielec-
tric permittivity was chosentobee,; : £, = 1 : 10 in order
to obtain spatially strong varying fields at the interface. Results
for the dominant mode are displayed in Table V.

The most striking aspect are the poor results for the multires-
olution column. They are far worse than those of any other tech-
nigue and improve only by adding wavelets of higher order to
each field component in every cell. This strongly supports the
idea of partially higher order approaches yielding worse results
compared to uniform lower order ones because of the truncated
field expansion that was put up in the analytic examination in
Section Il1.

Even the local sampling approach used in many publications
so far (e.g., [3], [5] and [8]) cannot hold against FDTD of the
sameresolution. Notethat thealgorithm for CDF (2, 2) wavelets
in zero order with local sampling is identical to the one with
compactly supported Daubechies' wavelets.

Only the accurate treatment using the material operator in its
complete form can justify a cell reduction compared to FDTD
by afactor of 1.5 to 2.

B. Smulation of PECs

In order to test the modeling of PECs, different resonating
three-dimensional cavities have been studied with MRTD and
compared to the results of conventional FDTD. The Courant
numbers were chosen to be ¢ = 0.57 at the stability limit for
FDTD and § = 0.1 for MRTD simulations.

The ordinary rectangular resonator in Fig. 8(a) has been the
target of several successful examinationswith MRTD in the past
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Fig. 8. Different resonating cavities bounded by PECs. (a) Rectangular.
(b) With thin iris. (c) L-shaped.

TABLE VI
DOMINANT RESONANT FREQUENCY OF CAVITY 8(a).
THE ANALYTICAL VALUE 1S 124.91 MHz

cellsperm | FDTD | CDF(2,2) | Battle-Lemarie
2 122.98 125.40 124.98
(-1.545%) | (+0.392%) (+0.056%)
4 124.45 124.96
(-0.368%) | (+0.040%)
6 124.66 124.93
(-0.200%) | (+0.016%)
12 124.86
(-0.040%)

(e.g., [1], [2], and [4]). Itsresults in Table VI were added here
just for the sake of completeness.

Even with very low discretization rates, smooth MRTD ap-
proaches are capable of modeling the exclusively harmonic spa-
tial field distributions with negligible phase error, as predicted
in all analytical investigations.

The next cavity under investigation has a thin iris located at
its center in order to test the modified PEC algorithm of Sec-
tion 1V-B with the proposed effective aperture height. Again,
the basic resonant mode is of primary interest due to high field
amplitudesin theiris plane and, thus, a strong dependence on
the metallization height. Modes with central nodes are not af-
fected by theiris' dimensions and, therefore, error magnitudes
arein line with those of the rectangular cavity for all schemes.

Results for this dominant resonant frequency are given in
Table VII for three different discretization rates.

Again, a reduction of nodes per wavelength by a factor of
three or more is possible. Note that the first CDF value has not
converged yet and that no edge corrections have been applied to
conventional FDTD.

Unfortunately, this geometry adjustment cannot be extended
to arbitrary forms, leading to poor results for MRTD schemes
on outer edges. A simple but striking example is the L-shaped
cavity in Fig. 8(c). The basic mode was chosen for examination
according to the same argumentation as before, with the results
displayed in Table VIII.
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TABLE VII
DOMINANT RESONANT FREQUENCY OF CAVITY 8(c). THE MODE-MATCHING
TECHNIQUE AND SPECTRAL-DOMAIN APPROACH VALUE IS 137.90 MHz

cellsperm [ FDTD | CDF(2,2) | Battle-Lemarie

2 104.79 139.77 108.30
(-24.01%) | (+1.356%) | (-21.46%)

4 119.01 135.06 120.58
(-13.70%) | (-2.059%) | (-12.56%)

8 127.97 135.94 128.88
(-7201%) | (-1.421%) | (-6.541%)

TABLE VIII

DOMINANT RESONANT FREQUENCY OF CAVITY 8(C).

THE MMT VALUE IS 76.04 MHz

cellsperm | FDTID | CDF(2,2) | Battle-Lemarie
2 76.61 78.18 78.09
(+0.750%) | (+2.814%) |  (+2.696%)
3 76.49 77.24 77.23
(+0.598%) | (+1.578%) (+1.565%)
4 76.36 76.84 76.93
(+0.421%) | (+1.052%) |  (+1.170%)

Due to the systematic error of the image principle in front
of the edge, MRTD failures even exceed those of conventional
FDTD with the same discretization rates.

V1. CONCLUSION

In the first part of this paper, MRTD schemes with local ad-
dition of higher order wavel ets have been investigated. Reasons
against these multiresolution approaches were found in analyt-
ical studies, aswell asin simulations on resonant structures. In
both cases, they lead to less accurate results. All acquired points
contradicting the fixed use of different wavelet orders in one
mesh are as follows.

1) Partially higher order approaches seem to yield worse re-
sultsthan auniform lower order one dueto truncated field
expansion.

2) AsinFDTD, itisnot possible to formulate ageneral sta-
bility criterion for multigrid approaches since MRTD’s
maximum Courant number strongly depends on the
wavelet level [4].

3) Above the zeroth-order scheme, spurious solutions must
be expected.

4) According to [12], the shift of dua subgrids for E- and
H-fields is a function of the wavelet level in homoge-
neous schemesin order to obtain minimal dispersion. This
isnot possible for spatialy varying field expansions.

5) Haar wavelets do not allow multiresolution at al since
different levels do not couple (see Table | and [13]).

Therefore, anapriori multiresolution approach isnot thought

to be of any advantage over zeroth-order calculations. Future
work should concentrate on dynamic scale adaption [7].

Additionally, it was shown that CDF or Daubechies’ wavel ets

with alocal sampling technique to model dielectric boundaries

are inferior to conventional FDTD formulations with the same
resolution even at simple one-dimensiona structures. This ef-
fect is expected to increase in the three-dimensional case with
jumping normal field components, as their approximation with
smooth wavelets is worse compared to hard jumping FDTD
rectangles.

In the second part of this paper, studies focused on infinitely
thin perfect electric walls. Due to the noncompact triangular
form of CDF dual wavelets, these thin metallizations can be
modeled more precisely by simply enlarging the iris length by
onecell. Unfortunately, this proceeding cannot be transferred to
any edge form.

Both conclusions show that CDF-MRTD algorithms seem to
be superior over FDTD only for certain geometriessuch asideal
microstrip lines with infinitely thin metallizations and uncom-
plicated dielectric arrangements. Since these compositions are
candidates for spectral-domain methods, MRTD must be com-
pared to those for propositions about computational time and
memory.
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